IB Physics Static and Kinetic Friction
/A tutorial sheet on static and kinetic friction problems from subtopic 2.2 forces is given below
- A 3.0 kg block is at rest at rest on each of two rough inclined planes. One incline makes an angle of 37° with the horizontal, the other 53°. On which block is a greater force of static friction acting?
- A block of mass 2.0 kg is on a rough horizontal table. The coefficient of static friction between the block and the table is 0.4. A horizontal force of 5.0 N to the right is applied to the block. What is the force of static friction between the block and the table?
- A block of wood of mass 4.0 kg has a brick of mass 2.0 kg sitting on it. The block rests on a smooth horizontal surface and the block and brick are initially at rest. A constant horizontal force of 12.0 N is applied to the block. What are the speeds of the block and the brick after 12.0 s? Assume that the brick stays on the block and that the coefficients of static friction and kinetic friction between the surfaces are 0.2 and 0.1 respectively.
. Enter the sign of the charge when substituting for q.
. Enter the sign of each charge when substituting for q. Negative potential energy means the charges attract and positive work must be done to separate the system to a state where the charges do not influence each other.
. Enter the sign of the source charge when substituting for q. A negative field value means towards the source charge, a positive value means away.

, where f' is the frequency measured by the observer, f is the frequency of the sound waves emitted by the source, v is the speed of sound and vo and vs are the velocities of the observer and source respectively. Note: Draw the arrow from the observer to the source. This is the positive direction for choosing the signs of the velocity vectors, vo and vs
where the negative sign indicates that the heat flow ∆Q is from the high temperature end to the lower temperature end and the change in temperature ∆T is the final temperature minus the initial temperature. The thermal conductivity of the material is k, the cross sectional area that the heat flows through in a time ∆t is A and ∆x is the distance between the end points.